Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 132.026
1.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38708767

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Newcastle disease virus/pathogenicity , Newcastle disease virus/genetics , Newcastle disease virus/classification , Animals , Newcastle Disease/virology , Newcastle Disease/epidemiology , Angola/epidemiology , Virulence , Poultry Diseases/virology , Poultry Diseases/epidemiology , Hot Temperature
2.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720313

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
3.
Sci Rep ; 14(1): 10668, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724593

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Chickens , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/methods , Chickens/genetics , Mammals/genetics , Food Labeling , Food Analysis/methods , Birds/genetics , Meat/analysis , Polymerase Chain Reaction/methods
4.
PLoS One ; 19(5): e0303371, 2024.
Article En | MEDLINE | ID: mdl-38728352

Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.


Chickens , Herpesvirus 2, Gallid , Marek Disease , Oncogene Proteins, Viral , Phylogeny , Animals , Chickens/virology , Taiwan/epidemiology , Marek Disease/virology , Marek Disease/prevention & control , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/pathogenicity , Virulence/genetics , Oncogene Proteins, Viral/genetics , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Marek Disease Vaccines/genetics , Marek Disease Vaccines/immunology , Vaccination/veterinary
5.
PLoS One ; 19(5): e0302913, 2024.
Article En | MEDLINE | ID: mdl-38728358

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
6.
Sci Rep ; 14(1): 10702, 2024 05 10.
Article En | MEDLINE | ID: mdl-38729976

Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.


Cecum , Chickens , Coccidiosis , Eimeria , Gastrointestinal Microbiome , Ileum , Poultry Diseases , Animals , Chickens/microbiology , Chickens/parasitology , Cecum/microbiology , Cecum/parasitology , Eimeria/physiology , Ileum/microbiology , Ileum/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Poultry Diseases/microbiology , Poultry Diseases/parasitology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732016

Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.


Anti-Bacterial Agents , Chickens , Enterococcus , Microbial Sensitivity Tests , Animals , Chickens/microbiology , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Probiotics/pharmacology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy
8.
Lancet Planet Health ; 8(5): e309-e317, 2024 May.
Article En | MEDLINE | ID: mdl-38729670

BACKGROUND: Increasing awareness of the environmental and public health impacts of expanding and intensifying animal-based food and farming systems creates discord, with the reliance of much of the world's population on animals for livelihoods and essential nutrition. Increasing the efficiency of food production through improved animal health has been identified as a step towards minimising these negative effects without compromising global food security. The Global Burden of Animal Diseases (GBADs) programme aims to provide data and analytical methods to support positive change in animal health across all livestock and aquaculture animal populations. METHODS: In this study, we present a metric that begins the process of disease burden estimation by converting the physical consequences of disease on animal performance to farm-level costs of disease, and calculates a metric termed the Animal Health Loss Envelope (AHLE) via comparison between the status quo and a disease-free ideal. An example calculation of the AHLE metric for meat production from broiler chickens is provided. FINDINGS: The AHLE presents the direct financial costs of disease at farm-level for all causes by estimating losses and expenditure in a given farming system. The general specification of the model measures productivity change at farm-level and provides an upper bound on productivity change in the absence of disease. On its own, it gives an indication of the scale of total disease cost at farm-level. INTERPRETATION: The AHLE is an essential stepping stone within the GBADs programme because it connects the physical performance of animals in farming systems under different environmental and management conditions and different health states to farm economics. Moving forward, AHLE results will be an important step in calculating the wider monetary consequences of changes in animal health as part of the GBADs programme. FUNDING: Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth and Development Office, EU Horizon 2020 Research and Innovation Programme.


Animal Diseases , Animal Husbandry , Livestock , Animals , Animal Diseases/economics , Animal Diseases/epidemiology , Animal Husbandry/economics , Animal Husbandry/methods , Cost of Illness , Chickens , Global Burden of Disease , Global Health
9.
Parasit Vectors ; 17(1): 221, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745229

BACKGROUND: The chicken body louse is an obligate ectoparasite of domestic chickens. Chicken body lice feed on feathers, and infestation with this louse is linked to decreases in egg production, hen weight, and feed conversion efficiency. However, it is unknown how chicken body lice impact egg-laying chickens in cage-free environments. Welfare and behavior metrics were collected from flocks of egg-laying chickens either infested with chicken body lice or left uninfested. METHODS: In two trials, two flocks of cage-free commercial egg-laying chickens were infested with chicken body lice or maintained as uninfested controls. At three timepoints, behavior and welfare of all chickens was measured. On-animal sensors were used to quantify pecking, preening, and dustbathing behavior. Other animal-based welfare metrics included recording comb wounds and skin lesions. RESULTS: Birds infested with chicken body lice exhibited significantly more preening behaviors than uninfested birds, even at low louse levels. Moderate or severe skin lesions were detected on birds that were moderately infested with chicken body lice while skin lesions were never detected on uninfested birds. CONCLUSIONS: The welfare of chickens was impacted by the chicken body louse, a chewing louse that primarily feather feeds. Evidence of skin lesions on infested birds suggests that lice may cause more damage to birds than previously thought, and further evaluation of louse economic damage is necessary.


Animal Welfare , Chickens , Housing, Animal , Poultry Diseases , Animals , Chickens/parasitology , Poultry Diseases/parasitology , Female , Behavior, Animal , Amblycera/physiology , Feathers/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
10.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691179

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Animal Feed , Chickens , Diet , Dietary Supplements , Egg Yolk , Selenium , Vitamin E , Animals , Female , Dietary Supplements/analysis , Animal Feed/analysis , Selenium/administration & dosage , Selenium/analysis , Egg Yolk/chemistry , Vitamin E/administration & dosage , Vitamin E/analysis , Diet/veterinary , Random Allocation , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , beta Carotene/analysis , beta Carotene/administration & dosage , beta Carotene/metabolism
11.
PLoS One ; 19(5): e0297643, 2024.
Article En | MEDLINE | ID: mdl-38696379

Indigenous and were used to study genetic diversity and population structure analyses. Polymorphism information content (PIC) values ranged from 0.0 to 0.5, with 21,285 SNP markers (35%) being in the lowest PIC value range (0 to 0.15) while 13,511 (commercial chickens have developed unique adaptations to their environments, which may include nutrition, pathogens, and thermal stress. Besides, environmental pressures and artificial selection have generated significant genome-wide divergence in chickens, as those selection pressures contribute a considerable evolutionary force to phenotypic and genotypic differentiation. Herein, we determined genomic diversity of indigenous chickens from semi-deciduous rainforest (SDR), coastal savannah (CS) and Guinea savannah (GS) agro-ecological zones (AEZs) in Ghana and commercial crossbreds (CC) reared at the Kwame Nkrumah University of Science and Technology (KNUST). We generated SNP markers from 82 chickens (62 indigenous chicken ecotypes and 26 commercial crossbred ecotype) using DArT-Seq technology. A total of 85,396 SNP markers were generated and after filtering the data, 58,353 markers 21%) were in the highest PIC value range (0.45 to 0.50). The CC were more genetically diverse than the indigenous birds, with the highest expected heterozygosity value of 0.220. Between the commercial crossbreds population and the indigenous ecotypes, pairwise FST values were estimated to be 0.105 between CS, 0.096 between SDF, and 0.133 between GS. Furthermore, PCA analysis showed that the CC, SDF and GS chickens clustered together and are genetically distant from the commercial crossbred. We herein show that chickens from the AEZs studied can be considered as one population. However, due the abundance of agro-byproducts in the SDR compared to the CS and GS, chickens from the SDR AEZ had better growth compared to their counterparts. It is suggested that the genetic diversity within the local ecotypes could form the basis for genetic improvement.


Chickens , Phenotype , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Genetic Variation , Ghana , Ecotype , Genotype
12.
Eur J Med Res ; 29(1): 264, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698476

BACKGROUND: The fundamental prerequisite for prognostically favorable postoperative results of peripheral nerve repair is stable neurorrhaphy without interruption and gap formation. METHODS: This study evaluates 60 neurorrhaphies on femoral chicken nerves in terms of the procedure and the biomechanical properties. Sutured neurorrhaphies (n = 15) served as control and three sutureless adhesive-based nerve repair techniques: Fibrin glue (n = 15), Histoacryl glue (n = 15), and the novel polyurethane adhesive VIVO (n = 15). Tensile and elongation tests of neurorrhaphies were performed on a tensile testing machine at a displacement rate of 20 mm/min until failure. The maximum tensile force and elongation were recorded. RESULTS: All adhesive-based neurorrhaphies were significant faster in preparation compared to sutured anastomoses (p < 0.001). Neurorrhaphies by sutured (102.8 [cN]; p < 0.001), Histoacryl (91.5 [cN]; p < 0.001) and VIVO (45.47 [cN]; p < 0.05) withstood significant higher longitudinal tensile forces compared to fibrin glue (10.55 [cN]). VIVO, with △L/L0 of 6.96 [%], showed significantly higher elongation (p < 0.001) compared to neurorrhaphy using fibrin glue. CONCLUSION: Within the limitations of an in vitro study the adhesive-based neurorrhaphy technique with VIVO and Histoacryl have the biomechanical potential to offer alternatives to sutured neuroanastomosis because of their stability, and faster handling. Further in vivo studies are required to evaluate functional outcomes and confirm safety.


Anastomosis, Surgical , Chickens , Tensile Strength , Animals , Anastomosis, Surgical/methods , Biomechanical Phenomena , Tissue Adhesives/pharmacology , Fibrin Tissue Adhesive/pharmacology , Peripheral Nerves/surgery , Peripheral Nerves/physiology , Adhesives , Neurosurgical Procedures/methods
13.
Trop Anim Health Prod ; 56(4): 161, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733430

Chickens are definitely among the most prevalent and broadly distributed domestic species. Among these, Ayam Cemani, also known as black chicken, is a rare Indonesian chicken breed originating from the island of Java. The main characteristic of this breed is that the body, both internally and externally, is entirely black. This is due to a condition named fibro melanosis, in which there is an over accumulation of melanin pigment in body tissues. In addition to this, Ayam Cemani meat results to be also higher in protein content and lower in fat. Moreover, Ayam Cemani meat is also known to have antioxidant and glucose-binding capacities. These properties make it very desirable within the market and consequently very expensive. Their meat is also used traditionally by tribal healers in the treatment of some chronic illnesses. In general, compared to other chicken species, the Ayam Cemani showed an higher genetic resistance to some infectious diseases commonly affecting poultry species. As regard the breeding, Ayam Cemani is a unique breed which may only be raised in specific locations, characterized to be a slowly growing breed with a lower body weight in comparison to the other poultry breeds. Nowadays, due to an improvement in the management, the nutrition and diseases control, it is possible to enhance their productivity. To date, there are not many studies in the literature on the specific breed of Ayam Cemani. For this reason, this review aims to provide a comprehensive overview of all the knowledge of the Ayam Cemani breed, the nutritional composition of the meat and consumer acceptance.


Chickens , Nutritive Value , Animals , Chickens/physiology , Indonesia , Meat/analysis , Consumer Behavior
14.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747207

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Chickens , Dust , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Salmonella typhimurium , Animals , Chickens/microbiology , Salmonella typhimurium/growth & development , Dust/analysis , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Cecum/microbiology , Liver/microbiology
15.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Article En | MEDLINE | ID: mdl-38742598

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Chickens , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Progesterone , beta Catenin , Animals , Female , Progesterone/biosynthesis , Progesterone/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Granulosa Cells/metabolism , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gene Expression Regulation/physiology
16.
Vet Med Sci ; 10(3): e1475, 2024 May.
Article En | MEDLINE | ID: mdl-38739101

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Chickens , Eggs , Salmonella enteritidis , Salmonella typhimurium , Animals , Iran/epidemiology , Salmonella enteritidis/drug effects , Salmonella enteritidis/isolation & purification , Eggs/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Cross-Sectional Studies , Prevalence , Anti-Bacterial Agents/pharmacology , Quail/microbiology , Drug Resistance, Bacterial , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
17.
PLoS One ; 19(5): e0295109, 2024.
Article En | MEDLINE | ID: mdl-38739572

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Chickens , Genome-Wide Association Study , Quantitative Trait Loci , Animals , Chickens/genetics , Chickens/growth & development , Body Weight/genetics , Polymorphism, Single Nucleotide , Epistasis, Genetic , Phenotype , Female , Multifactorial Inheritance , Male
18.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711127

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Animal Feed , Chickens , Diet , Dietary Supplements , Meat , Spirulina , Animals , Chickens/growth & development , Animal Feed/analysis , Spirulina/chemistry , Diet/veterinary , Male , Meat/analysis , Meat/standards , Animal Nutritional Physiological Phenomena/drug effects , Muramidase/metabolism
19.
Biol Res ; 57(1): 24, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711133

Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Chickens , Egg Yolk , Immunoglobulins , SARS-CoV-2 , Animals , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , Chickens/immunology , Cricetinae , Immunoglobulins/immunology , Egg Yolk/immunology , Antibodies, Viral/immunology , Female , Mesocricetus , COVID-19 Vaccines/immunology
20.
Vet Res ; 55(1): 58, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715081

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
...